ISSN 1070-4280, Russian Journal of Organic Chemistry, 2009, Vol. 45, No. 3, pp. 463–465. © Pleiades Publishing, Ltd., 2009. Original Russian Text © S.B. Nosachev, N.A. Shchurova, E.A. Tyrkova, A.G. Tyrkov, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 3, pp. 473–474.

> SHORT COMMUNICATIONS

Synthesis of New Pyrazole Derivatives from Benzylidenemalononitrile

S. B. Nosachev, N. A. Shchurova, E. A. Tyrkova, and A. G. Tyrkov

Astrakhan State University, pl. Shaumyana 1, Astrakhan, 414000 Russia e-mail: tyrkov@rambler.ru

Received November 9, 2007

DOI: 10.1134/S107042800903021X

1,3-Dipolar cycloaddition of diazoalkanes to acetylenes [1] or styrenes [2] activated by electron-withdrawing substituents underlies a traditional procedure for the synthesis of pyrazoles. For example, 1-bromo-1-nitro-2-phenylethene reacts with diazomethane in diethyl ether to give 5-bromo-5-nitro-4,5-dihydro-1*H*pyrazole, and treatment of the latter with hydrochloric acid or a solution of sodium hydrogen carbonate leads to the formation of 5-bromo- or 5-nitro-4-phenyl-1*H*pyrazole, respectively [3].

With a view to study competing effects of functional groups in an analog of 1-nitro-2-phenylethene, benzylidenemalononitrile (I), we examined its reactions with diazomethane (II) and diazoethane (III). The cycloaddition of diazoalkanes II and III to dipolarophile I occurred under mild conditions (in diethyl ether at -5 to 5° C), and the products were the corresponding 4-phenyl-1*H*-pyrazole-5-carbonitriles IV and V (Scheme 1).

signal appeared in their ¹H NMR spectra as a broadened singlet at δ 10.8–10.9 ppm. The presence of a labile hydrogen atom on the nitrogen in molecules IV and V opens prospects in further functionalization of these compounds, e.g., via alkylation of the corresponding potassium salts VI and VII. The latter were prepared in situ by treatment of 4-phenyl-1H-pyrazole-5-carbonitriles IV and V with potassium ethoxide. The alkylation of potassium salts VI and VII with chloromethyloxirane, phenacyl bromide, and 4-toluenesulfonyl chloride resulted in the formation of previously unknown alkylation products VIII-XI and N-sulfonyl derivatives XII and XIII (Scheme 2) whose structure was confirmed by spectral data and elemental analyses. The IR spectra of X and XI contained an absorption band at 1705 cm^{-1} due to stretching vibrations of the carbonyl group, while compounds XII and XIII displayed absorption bands at 1150 and 1300 cm⁻¹ belonging, respectively, to antisymmetric and symmetric

In the IR spectra of compounds IV and V we observed an absorption band at 3550 cm⁻¹ due to stretching vibrations of the NH group, and the NH

VI, VIII, X, XII, R = H; VII, IX, XI, XIII, R = Me; VIII, IX, R' = oxiran-2-ylmethyl; X, XI, $R' = PhCOCH_2$; XII, XIII, $R' = 4-MeC_6H_4SO_2$; Hlg = Cl, Br.

stretching vibrations of the SO₂ group. The ¹H NMR spectra of **VIII–XIII** were consistent with the assumed structures, and they resembled those reported for structurally related compounds [4, 5]. Protons in the oxirane ring of compounds **VIII** and **IX** resonated in the ¹H NMR spectra at δ 2.65–3.07 ppm. The ¹H NMR spectra of phenacyl and sulfonyl derivatives **X–XIII** contained signals typical of methylene protons in the NCH₂CO fragment (δ 6.44–6.45 ppm; compounds **X**, **XI**) or protons in the *p*-tolyl substituent (**XII**, **XIII**).

Thus the described reactions open a synthetic route to functionally substituted pyrazoles having various pharmacophoric groups on the nitrogen atom, which are difficult to obtain by other methods.

Diazomethane [6], diazomethane [7], and phenacyl bromide [8] were prepared according to known procedures.

Reaction of benzylidenemalononitrile (I) with diazoalkanes II and III (general procedure). A solution of diazoalkane II or III was added under stirring to a solution of 8 mmol of benzylidenemalononitrile (I) in 30 ml of anhydrous diethyl ether at -5 to 5°C until nitrogen no longer evolved. The mixture was then kept for 24 h at 25°C and evaporated under reduced pressure, and the oily residue was subjected to chromatography in a 250×10 -mm column charged with activated silica gel (Silicagel 100–400 µm) using carbon tetrachloride as eluent.

4-Phenyl-1*H***-pyrazole-5-carbonitrile (IV).** Yield 44%, mp 154–156°C. IR spectrum, v, cm⁻¹: 3550 (NH), 2230 (CN). ¹H NMR spectrum, δ , ppm: 7.35 m (H_{arom}), 7.58 s (CH), 10.9 br.s (NH). Found, %: C 70.74; H 4.03; N 24.58. C₁₀H₇N₃. Calculated, %: C 71.01; H 4.14; N 24.85.

3-Methyl-4-phenyl-1*H***-pyrazole-5-carbonitrile** (V). Yield 46%, mp 162–164°C. IR spectrum, v, cm⁻¹: 3550 (NH), 2230 (CN). ¹H NMR spectrum, δ, ppm: 2.35 s (CH₃), 7.34 m (H_{arom}), 10.8 br.s (NH). Found, %: C 7.95; H 4.78; N 22.74. C₁₁H₉N₃. Calculated, %: C 72.13; H 4.92; N 22.95.

1-Substituted 4-phenyl-1*H*-pyrazole-5-carbonitriles VIII–XIII (general procedure). A solution of 6 mmol of compound IV or V in 20 ml of ethanol was cooled to $0\pm5^{\circ}$ C, 6 mmol of potassium ethoxide was added, the mixture was kept for 0.5 h at 5°C, and the precipitate was filtered off, washed with cold ethanol, and dried. Pyrazole potassium salt VI or VII thus obtained was dispersed in 100 ml of acetone, 6 mmol of chloromethyloxirane or phenacyl bromide or a solution of 6 mmol of *p*-toluenesulfonyl chloride in ethanol was added, and the mixture was heated for 2 h under reflux. The mixture was then kept for 3 days at 25°C and evaporated under reduced pressure, the residue was treated with diethyl ether (3×10 ml), the extract was evaporated, and the residue was subjected to chromatography in a 500×10-mm column charged with activated silica gel (Silicagel, 100–400 μ m) using benzene (compounds **VIII**, **IX**) or chloroform (**X**–**XIII**) as eluent.

1-(Oxiran-2-ylmethyl)-4-phenyl-1*H***-pyrazole-5-carbonitrile (VIII).** Yield 62 %, mp 105–108°C. ¹H NMR spectrum, δ , ppm: 2.65 d (CH₂), 3.06 m (CH), 4.23 d (CH₂), 7.38 m (H_{arom}), 7.59 s (CH). Found, %: C 69.10; H 4.68; N 18.51. C₁₃H₁₁N₃O. Calculated, %: C 69.33; H 4.89; N 18.67.

3-Methyl-1-(oxiran-2-ylmethyl)-4-phenyl-1*H***pyrazole-5-carbonitrile (IX).** Yield 64%, mp 118– 120°C. ¹H NMR spectrum, δ , ppm: 2.35 s (CH₃), 2.64 d (CH₂), 3.05 m (CH), 4.21 d (CH₂), 7.35 m (H_{arom}). Found, %: C 70.05; H 5.27; N 17.38. C₁₄H₁₃N₃O. Calculated, %: C 70.29; H 5.44; N 17.57.

1-(2-Oxo-2-phenylethyl)-4-phenyl-1*H***-pyrazole-5-carbonitrile (X).** Yield 72%, mp 141–143°C. IR spectrum, v, cm⁻¹: 2230 (CN). 1705 (C=O). ¹H NMR spectrum, δ, ppm: 6.44 s (CH₂), 7.33–7.45 m (H_{arom}), 7.58 s (CH). Found, %: C 75.05; H 4.34; N 14.42. C₁₈H₁₃N₃O. Calculated, %: C 75.26; H 4.53; N 14.63.

3-Methyl-1-(2-oxo-2-phenylethyl)-4-phenyl-1*H***pyrazole-5-carbonitrile (XI).** Yield 74%, mp 152– 153°C. IR spectrum, v, cm⁻¹: 2230 (CN), 1705 (C=O). ¹H NMR spectrum, δ , ppm: 2.34 s (CH₃), 6.45 s (CH₂), 7.36–7.44 m (H_{arom}). Found, %: C 75.56; H 4.77; N 13.74. C₁₉H₁₅N₃O. Calculated, %: C 75.75; H 4.98; N 13.95.

1-(4-Methylphenylsulfonyl)-4-phenyl-1*H***-pyrazole-5-carbonitrile (XII).** Yield 71%, mp 172–174°C. IR spectrum, v, cm⁻¹: 2230 (CN); 1300, 1150 (SO₂). ¹H NMR spectrum, δ , ppm: 2.32 s (CH₃), 7.11–7.52 m (H_{arom}), 7.57 s (CH). Found, %: C 62.94; H 3.86; N 12.83. C₁₇H₁₃N₃O₂S. Calculated, %: C 63.16; H 4.02; N 13.00.

3-Methyl-1-(4-methylphenylsulfonyl)-4-phenyl-1H-pyrazole-5-carbonitrile (XIII). Yield 75%, mp 180–183°C. IR spectrum, v, cm⁻¹: 2230 (CN); 1300, 1150 (SO₂). ¹H NMR spectrum, δ , ppm: 2.32 s (CH₃), 2.35 s (CH₃), 7.12–7.54 m (H_{arom}). Found, %: C 63.86; H 4.27; N 12.31. C₁₈H₁₅N₃O₂S. Calculated, %: C 64.09; H 4.45; N 12.46. The IR spectra were recorded on an IKS-29 spectrometer from solutions in chloroform with a concentration of 40 mg/ml (cell path length l = 0.1 mm). The ¹H NMR spectra were measured from solutions in acetone- d_6 on a Tesla BS-487C spectrometer (80 MHz) relative to hexamethyldisiloxane as internal reference. The progress of reactions and the purity of products were monitored by ascending TLC on Silufol UV-254 plates using acetone–hexane (2:3) as eluent; spots were visualized by treatment with iodine vapor.

REFERENCES

- 1. Ivanskii, V.I., *Khimiya geterotsiklicheskikh soedinenii* (Chemistry of Heterocyclic Compounds), Moscow: Vysshaya Shkola, 1978, p. 164.
- 2. Baran'ski, A. and Kelarev, V.I., *Khim. Geterotsikl.* Soedin., 1990, p. 435.

- Parham, W.E. and Bleasdale, J.L., J. Am. Chem. Soc., 1951, vol. 73, p. 4664.
- Structure Determination of Organic Compounds: Tables of Spectral Data, Pretsch, E., Bühlmann, P., and Affolter, C., Eds., Berlin: Springer, 2000, 3rd ed. Translated under the title Opredelenie stroeniya organicheskikh soedinenii, Moscow: Mir, 2006, p. 192.
- Gordon, A.J. and Ford, R.A., *The Chemist's Companion*, New York: Wiley, 1972. Translated under the title *Sputnik khimika*, Moscow: Mir, 1976, p. 291.
- Organikum. Organisch-chemisches Grundpraktikum, Berlin: Wissenschaften, 1976, 15th edn. Translated under the title Organikum, Moscow: Mir, 1979, vol. 2, p. 247.
- 7. James, A., Marshally, I., and Patridge, I., *J. Org. Chem.*, 1968, vol. 33, p. 4090.
- Becker, H.G.O., Organikum. Organisch-chemisches Grundpraktikum, Berlin: Wissenschaften, 1964, 3rd ed. Translated under the title Obshchii praktikum po organicheskoi khimii, Moscow: Mir, 1965, p. 467.